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Aim

* To generalize some classical ideas from continued fractions to
the problem of simultaneous approximation of sets of irra-
tionals by rationals with common denominator

* To understand periodicity questions related to approximation
in number fields

* To construct badly approximable sets
* To study statistics of blocks of digits of continued fractions

» To do all of the above by computer experimentation, when
other approaches have failed
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Continued fractions

* (Simple, regular) continued fractions are symbolic dynamics of
the Gauss map:

g(x)=1/z—|1/x| for =z € (0,1]

% The partial quotient (‘digit’) = = |1/g<F 1> (2)]
(xr € {1,2,3,...}) is output at the kth iteration

* We write z = [ml,CBQ,ZBg, .. ] = 1/($1—|—1/(£C2—|—1/(ZE3—|— .. )))
* The continued fraction is finite iff x is rational

* The continued fraction is eventually periodic iff x is a
quadratic irrational
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Gauss map

| | . |

0.2 0.4 0.6 0.8 1.0
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Approximation properties of continued fractions

x If (for k=1,2.3,...)

{pk—1 qk—1] _ [0 1} [Zp?k—Q Qk—Z}
Pk Gk 1 zg] [Pk—1 qr—1
{p—1 q—1] _ [l 0}
Po Qo 0 1

then 2 is precisely the sequence of best approximants to x

dk

* That is, |ggr—pK| < |qxx—pr| VEk < K

* In particular, —m- < |grz—pi| <

$k+1Qk

* Note for small denominator applications: if A\ = exp(27mia),
then Vg we have 4|aqg—|qal| < |AN1—1| < 27|qa—|qa]]
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Diophantine approximation in one dimension

% In one dimension, we measure the goodness of approximation of the rational
number p/q to a by c(a,p,q) = qlga—p| |

* For each irrational « there are infinitely many rationals p/q such that
la—p/ql <1/¢% thatis, c(a,p,q) <1 |

* The approximation constant of a is c(a) = liminf, . c(a, |qa],q) |

* Introducing the notation (a§ for the distance from « to the nearest integer,
we have c(a) = liminf, . q{qal |

* « is said to be badly approximable if c(a)) >0 |

+ The one-dimensional diophantine approximation constant is c¢; =
limsup,cg c(), and this is known to have the value 1/+/5, attained for
example at the golden ratio o = (v/5—1)/2
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Diophantine approximation in two dimensions

In the two-dimensional case, we wish to simultaneously approximate a pair of
irrationals by a pair of rationals with common denominator:

# The closeness of approximation is measured by the maximum error of the
two components [

* We thus extend the meaning of the symbol (-§ by
lal = mm max(| qu1—p1 |, | qao—p2|) |

* Forq € Z, a = (ay, ) € R2\Q?, let

cla,q) = quaSQ, c(a) = liminf ¢(a,q) |

q— 00

* The two-dimensional sup-norm simultaneous diophantine approxima-
tion constant is then co =supc(a) |

«

#* The value of ¢s is unknown, but bounds are known: 2/7 < ¢y < 64/169
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>

Algebraic number fields

K is a nlumber field & Q C K and K is a finite-dimensional vector space
over Q

if K =Q(0), 0 is called a primitive element |

The conjugates of 6 are the roots 0; of the minimal polynomial of 6. These
define n embeddings of K in C |

Each K has a discriminant which is a squared multiple of the discriminant of
the minimal polynomial of 6 |

The norm Nx of an element z is the product of x with its conjugates |

A unit is an element of norm +1. The set of units U(K) forms a multiplica-
tive group |

Dirichlet’s theorem: there exists a set of units {uy,...,u,} such that every
unit w can be expressed as u = Cu;!'---u!'", where ( is a root of unity |

Such a set is called a set of fundamental units &

In other words, U(K) is isomorphic to a product of a cyclic group and an
additive Abelian group
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Algebraic number fields cotd.

> x € K is an algebraic integer if it is the root of a monic polynomial f ¢ Z[z]}
> The set of algebraic integers in K form a ring Zyx |

> A Z-basis of Zx considered as a Z-module is called an integral basis |

polynomial field d | integral basis | fund. units
r?—x—1 Q(V/5) 5| [1,x] {x}

2?5 Q(V5) 5 | (L (z+1)/2] | {(z+1)/2}
r2—2 Q(Vv2) 8 | [1,2] {x—1}

r?—3 Q(V3) 12 | [1, 7] {x—2}
222 —x—1 | Q(2cos(3E)) | 49 | [1,z,27] {221,241}
r°—x—1 Q(?7) —23 | [1,z,2%-1] | {z}
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Klein polygons - Q(+/5)

K=(Field of 22—2—1) =
Q(V'5)

Fundamental unit: v =«
Norm of f.u.: Nu = —1
Integral basis: B = {1, x}
(vV5—1)/2 = 1]

u2”

27,
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Klein polygons - Q(+/2)

K=(Field of 22—2) = Q(v/2)
Fundamental unit: u=x—1
Norm of f.u.; Nu = —1
Integral basis: B = {1, z}

u2Z
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Klein polyhedra

4 We work in R3, and in the lattice Z2 embedded in it

# Consider three planes with (not necessarily unit) normals «o; (i = 1,2,3)
through the origin. Consider the octant defined by a;(z) > 0

* Now form the convex hull of the points of Z> (excluding the origin) contained
in this octant. This is the Klein polyhedron of the cubic form a(x) =

a1(z)as(x)as(x)

% To visualize a Klein polyhedron, we take a finite piece near the origin and
flatten the piece onto a plane. More precisely, for each vertex point x in the
convex hull, we let y = |a(x)| ™32 and plot (21, 22), where

z = (log a1 ()], log [a2(y)|, log |as(y)])

 Thus z1+29+23 = 0, so by plotting any two components we have full
information

% The main point of interest is that the patterns are periodic iff the planes are
related to a totally real cubic number field

Keith Briggs Some experimental approaches to Diophantine approximation problems 12 of [3§]



Klein polyhedra examples - d =49 and d = 148
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More Klein polyhedra

1 h o ggs 2004 Nov 28 16:01
=49 o yunosPar s kov 96a: 11061 page 999,
i pol yhedron exarpl 0 2

-2

100
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The Furtwangler algorithm

* The aim of the Furtwangler algorithm [Fur26, Fur28] is to find
all best sup-norm simultaneous rational approximations to a
given irrational pair (aj,as) € R*\Q?1

* (Q, P, P,) € Z° is called a best approximation triple if Vg < Q
max(|ga1—pil, [gaa—ps|) > max(|Qar— P, |Qaz— P) 1

> The algorithm works by keeping an approximation matrix A whose rows we
label P,Q, R. A typical row contains integers (p1, p2,q) corresponding to an
approximant (p1/q,p2/q), which need not be a best approximant. A step of
the main loop of the algorithm consists of finding a new row S which will
replace one of P,(Q or R, and a reordering of the rows. The new row S is
always an integer linear combination of P,Q and R

> Choosing S involves considering several possibilities, and the final choice
is such that no best approximant will be missed, though the number of
iterations between best approximations may be arbitrarily large

> there are five different unimodular update matrices B (with a,b € Z):

218 (584 588
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The Furtwangler algorithm - behaviour
d=+49 d=+49
07 I I I I I 07 T I T [ i I ! I j I

0.0t E L O R B . | . | . | . | . ! .
0 50 100 150 200 250 300 0 200 400 600 800 1000 1200
log(a) log(a)

c(a, q) at best approximation denominators ¢g. Left: a= a ‘random’ pair of
irrationals. Right: o = (4t*—1,2t—1),t = cos(2m /7).
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The 2-dimensional Bruno function

2d Bruno function 127
1.22

117
1.1
1.06
1.M
0496
040
035
0.0
0.74
068
064
05e

s Bla) =372 log (qiy1)/qi
o5 where {qo,q1,-..} are the

. BSADs of a = (z,y)

01 0.z 0.3 0.4
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The worst approximable pair

* In [Bri03], | used some theorems of Cusick to explicitly con-
struct some provably badly approximable pairs

* The worst pair found was

o ~ 0.484873957288933295198967824780619062115945633665761:
0.540492503500466747825742853957575236742411192672356¢

Q

9

which has cy(a) > 0.2857082
» To fully specify this pair would take several thousand bits

» The method depends on finding sequences in the continued
fraction of 2cos(27/7) of the form |...,ny,1,1,n9,...] with
ni, ny large

* It is not known whether ny,ny, become arbitrarily large. If so,
co = 2/7 can be obtained in this field
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The worst approximable pair in Furtwangler’s algorithm

the worst pair

0.7

06

& ]
3000 4000
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-
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The Z* map for partial quotients of 2cos(27/7)

* By a method of Lagrange, the partial quotients of 2cos(27/7)
are given by the output of this map on Z*:

* Algorithm:

>

28 [—1, —2, 1, 1] — [20,21,2’2,23]

w <« 1

for j in 2,1,0: Zj += Zji+1

for j in 2,1: z; += zj14

fOI’j in 2: Zj += Zj+1

if z04+21+20+23<0:w+=1

else: output w; z « |—2z3, —29, —21, — 20|

Keith Briggs Some experimental approaches to Diophantine approximation problems 20 of [3§]



Ergodic properties of continued fractions

For almost all irrational z, ordinary 1d continued fractions have these
properties as a consequence of the invariant measure of the Gauss
map being log,(1+x):

* the digit ¢ occurs with relative frequency u(i) = log, {EEZ};}

* limg oo (212223 . .xk)l/k — 2.68545 ...
* The denominator growth rate is
g1 = limg—00 q1"/* = exp (7?/(1210g 2)) = 3.27582....

Lagarias has proven that gy, the growth rate of 2d BSADs is bounded by g5 >

S = 1.27202. ..

* Using Furtwangler’s algorithm, | estimated that the average ¢
is really about 3.07

* | found the smallest g, in the field of discriminant —23, where
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Statistics of blocks for 1d continued fractions
* | will look at occurrences of finite blocks of digits ¢ =
(21,92, - -+, %m), 15 = 1

* [IKO2] gives a formula for relative frequency of the m-block 1
which holds Ve > 0 as n — oo for almost all irrationals:

card{x : (T, Thim-1) =t,1 < K< n}t/n=
14+v(7) _ ]

where (with [i] = p,./q., for the m-block 7)

u(i) = < P/ Qm if m is even
(i) = me/qm if m is odd
o | (Pm+Pm-1)/(@m+Gm-1) if m is even
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Numerical values for the frequencies

For 2-blocks:

1

2

3 4 5 6

0.15200
0.07038
0.04064
0.02647
0.01861
0.01380

o UT AN WIN =

0.07038
0.02914
0.01594
0.01005
0.00691
0.00505

0.04064 0.02647 0.01861 0.01380
0.01594 0.01005 0.00691 0.00505
0.00851 0.00529 0.00361 0.00262
0.00529 0.00326 0.00221 0.00160
0.00361 0.00221 0.00150 0.00108
0.00262 0.00160 0.00108 0.00078

Keith Briggs
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Explicit examples of abnormal numbers

11(2)/10(2) =

tanh(1) =

*******

) o

Keith Briggs

exp(1l/n) =

2211 92— Lko]

1,

2,3,4,.

|1+a/d(2/d)/ Ia/d(2/d)

1,3,5,7,..

]

all quadratic irrationals, e.g. 2/2 =1+[2,2,2,2,...]

..] (ratio of modified Bessel functions)

la+d,a+2d,a+3d, .. .|

1,n—1,1,1,3n—1,1,1,5n—1,...]; n = 1,2,3...
exp(2) = 7+[2,1,1,3,18,5,1,1,6,30,8,1,1,9,42,11,1,1,. . .]
exp(2/(2n+1)); n=1,2,3...

— 20,21 21 93 95 98 913 1. s = (\/5—1)/2
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Method

» | calculated a few million digits for several cubic irrationals
and a few other irrationals

* | counted exactly the observed frequency of all blocks of
lengths 1,2,3,4, and 5

% | calculated a Pearson y? test statistic which measures the
deviation of the observed frequencies from the expected fre-
quencies

» Because the number of degrees of freedom v is so large (typ-
ically several thousand), a normal approximation is sufficiently

accurate. The transformation is Z = /2x?—+/2v—1. Under
th? as)sumption of normality (of the cf of x!), Z is distributed
N(0,1
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v? results: 2'/3 and 31/3
cbrt2 cbrt3

normalizedy?
normalizedy?

0 1 2 3 4 5 0.0 0.5 1.0 15 2.C
partial quotients/10 partial quotients/10
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x* results: 2cos(27/7) and largest root of 2°—8x—10
2cos2pion’ m163

normalizedy?
normalizedy?

0 1 2 3 4 5 0 1 2 3 4 5
partial quotients/10 partial quotients/10

(the last example is famous for having several abnormally large digits)
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2 results: (vV5-1)/2+v2-1 and «

1600 Pl
4 ! ! ! ! ! 2 B B

& &

(O] O]

N N

© ©

= =

o o

c c
— D b -
-4 i i i i i _4||
0.0 0.5 1.0 1.5 2.0 2.5 3.C 0 50 100 150 20C

partial quotients/10 partial quotients/10
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Autocorrelation of digits

* We would expect that the autocorrelation function (acf) of
any analytic function of the digits that has a finite mean (for

example, the log or the reciprocal) would decay like ¢* at lag
k, where ¢ ~ —0.303663 is Wirsing’s constant

* This is investigated in the following graphs. | plot log,, of the
absolute value of the acf as a function of lag. The green line
has the Wirsing slope

* In Rockett & Szusz [RS92], we have the result
Priz, =1 & zpir = 8] = Priz, = r]Priz,.r = s] (1+0(¢"))

This, however, is too weak to allow explicit statistical tests
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acf estimation difficulties

* For the AR(1) process z(t+1) = az(t)+e, |a] < 1, the exact acf
at lag k is p(k) = oF

* But the usual acf estimator » for a sample of size n has
variance

—2ka?F

var [r, (k)] = — T

1 [(1+a2)(1+a2’<)

* More generally, for a process whose acf decays for large k
in the same power-law fashion, we have approximate variance

var [r, (k)] = = {“0‘1 for large k

1—a?

* | expect my process to conform to this behaviour, and if it
does, putting in the numbers gives an estimate of £ = 6 for

the largest k£ for which the acf estimates are meaningful fd
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autocorrelation of logs of digits: 2'/2 and 3!/3
cbrt2 cbrt3

log,Jautocorrelation|
I
w
!

i
log,Jautocorrelation|
|
w
!

i

0 5 10 15 20 0 5 10 15 20
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Appendix: history 1

> In the early 1900s, Minkowski’s work on geometry of numbers [Min11b, Min11d]
provided a theoretical basis for all subsequent work. Perron, Klein etc.
established the metric theory of one-dimensional continued fractions.

> In the 1920s, Furtwdingler published the first algorithm which aimed to find
all the best sup-norm approximants up to a given denominator. This work
was largely forgotten [Fur26|, Fur28, Bri0O1].

> 1950s: Davenport, Cassels.

> In 1970, G. Szekeres [Sze70] published his multi-dimensional continued fraction
algorithm. It is now known that this does not find all best sup-norm
approximants.

> In the 1970s there was significant work by Cusick, Adams and Krass (see
bibliography) especially on the relation of two-dimensional approximation to
cubic number fields.

> In 1981, Brentjes completed his thesis, which made major contributions to

the field, in particular to two-dimensional Euclidean norm approximation. The
published version of the thesis is now a basic reference in the field ([Bre81])
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Appendix continued

> Around 1985, G. Szekeres published three papers on computer experiments
intended to search for the 2 and 3 dimensional approximation constants. This
work was not fully rigorous but gave intriguing results which have never been
followed up.

> [Sch95] studied ergodic properties of various algorithms.

> In the 1990s several Russian and French mathematicians developed the concept
of Klein polyhedra ([Lac93, BP94, Kor94, Kor95, BP97, ILac98a, ILac98b|, |Arn98,
KS99])

> In 1995, Lagarias and Pollington published a clear analysis of the Szekeres
multi-dimensional continued fraction algorithm ([LP95]])

> In 1997, Clarkson ([[Cla97]) completed his thesis in which was presented for
the first time an algorithm provably finding all best approximants in two
dimensions with respect to arbitrary radius and height functions.

> In the late 1990s, Khanin and Hardcastle proved some results about an
n-dimensional Gauss map [HKOOa, HKOOb].

> A very good summary of the state-of-the-art is [M0s99]. See also [Sch96].
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