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Definitions for graphs

Yo

[1 (simple unlabelled undirected) graph:

Yo

L] (simple unlabelled undirected) connected graph:

o'o C
] (simple undirected) labelled graph: &
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The problem

.| compute the numbers of connected labelled graphs with n
nodes and n—1,n,n+1,n+2,... edges
> with this information, we can compute the probability of a randomly chosen
labelled graph being connected

.| compute large-n asymptotics for these quantities, where the
number of edges is only slightly larger than the number of
nodes

L] | began by reading the paper [fss04], but found some incon-
sistencies

L] so | did some exact numerical calculations to try to establish
the dominant asymptotics

L] | then looked at some earlier papers and found that the
required theory to compute exact asymptotics is known

L] | computed the exact asymptotics and got perfect agreement
with my exact numerical data
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The inspirational paper [fss04]

Philippe Flajolet, Bruno Salvy and Gilles Schaeffer: Airy
Phenomena and Analytic Combinatorics of Connected Graphs

www.combinatorics.org/Volume_11/Abstracts/v11i1r34.html

The claim: the number C(n,n+k) of
connected graphs with n nodes and excess (edges-nodes) =
k> 2 (why not for £k =17?) is

v Q) 6)” [rm T Var© ()

k 1 2 3 4 5) 6 7

A1) | 5/24 5/16 1105/1152 | 565/128 82825/3072 19675,/96 1282031525,/688128
Al (1) | 19/24 | 65/48 | 1945/384 21295/768 | 603965/3072 | 10454075/6144 | 1705122725/98304

Airy in Playford:

www.ast.cam.ac.uk/~ipswich/History/Airys_Country_Retreat.htm
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Some problems with the paper

L] 1 did some comparisons with exact counts for up to n = 1000
nodes and for excess £ =2,3,....,8

.| The exact data was computed from the generating functions
using maxima (found to be faster than maple)

L] The fit was very bad

] This formula was found to fit the data much better for

k = 2:

3k—1
1

AV (5) T(31/2)

T((3k—1)/2) Vn

(1

AD/AD)—k 2 (1

)

L] Also, on pages 4 and 24, | think S should have the expansion

1—(5/4)a+(15/4)a’+. ..
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Comparison of exact data with corrected formula
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Definitions for generating functions

[1 generating function (gf):

@)
{ay,as,a3,...} < Z apz”
k=1

| exponential generating function (egf):

©.@)

af

{ay,a9,a3,...} E k_
k:
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Exponential generating functions
| exponential generating function for all labelled graphs:
Z 1+w ”/n'
n=0
|| exponential generating function for all connected labelled
graphs:
c(w,z) = log(g(w,z))

2 3 4

= z+w%+(3w2+w3)%+(16w +15w* + 6w’ +w )Z'+ .
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egfs for labelled graphs [jklp93]
| rooted labelled trees
_ _ n—1% 2.2,9.3
T(z) =zexp(T(z)) = ;n = z+52 520+
| unrooted labelled trees
W_i1(2) =T(2)-T(2)*/2 = 24522+ 523+ .
| unicyclic labelled graphs
1

1 1 1 2 1 15 222 3660
Wy(z) = élog ll—T(z)] —§T(z)—ZT(z) = g2 e 2L 2R 0
L] bicyclic labelled graphs
T()*(6—T(z
Wiz) = LT oa s smoe,

24(1-T'(2))
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Introduction to asymptotic expansions

| Stirling:

2or\'"? [, 1 1 139
T -~ =7 (_) 14— -1, - =2 =< -3
() ( ) [+12” o8 a0

| Taylor series:

1/T'(n) = n+0.57721566...n—0.65587807 ... n*+. ..

|| e.g. for n =4, I'(4) = 6: 3 terms of asymptotic expansion
give an absolute error < 1079

| cf. the Taylor series - 3 terms give an absolute error > 5

| asymptotic expansion diverges for all n!
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Asymptotic expansion of C(n,n+k) It

£ = V2w green: from [bcm90] red: from [fssO4] (with removal of factor e)

k type | nV% | [n7] | [0
1 tree 1 0 0 0

0 unicycle fﬁ

1 bicycle ﬁ

2 tricycle 52?6 522( _%

3 | quadricycle || 55 5775 | —V/Tog

4 | pentacycle 191(3(3)8

blue: conjectured by KMB from numerical experiments

k type || [0 | [P | [n7] | nT¥R | nT? | [nT7
0 unicycle é‘% —% fﬁ % €T152 _ﬁ?
1 bicycle D —&5h % | S | —mm?

2 tricycle % — i % — 111

3 | quadricycle % 1037506
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Theory 1

The previous observations can be proved using theory available in [jklp93] and
[fgkp95]. | sketch the computations.

L] Ramanujan’s Q -function is defined for n =1,2,3,...:
( ) Zk 1nk:_]-_|_n 1_|_(n—1)(n—2)_|_.”7

n2

37 Q)12 = —log(1-T(z )),n:/here T is the egf for

rooted labelled trees. T( )= 2"
L] T(2) = zexp(T(2))
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Theory 2

L] to get the large-n asymptotics of @, we first consider the
2

related function R(n) = 1+n11+(n+1")°’(n+2)+. .,n=1,23,...

> we have Q(n)+R(n) =nle"/n"
> let D(n) = R(n)—Q(n)

oo n— ZTL — z 2
> anl D(n)n 1W — log[(g(ljl(ez)i ]

> D(n) ~ Y 52, c(k)[2"|(T(2)—1)", where c(k)=[5"] log(62/2/(1—(1468)e™))

. 2, 8 -1 16 . —2 32 _—3, 17984 _ —4 , 668288 . —5
> maple gives D(n)~§—|—135n —235 ™ "Tw505 ™ " TTog20025 ¥ Taoaseros 0T
—6
O(n )

Ll now using Q(n) = (n!le™/n"—D(n))/2, we get

1.1/2 1, 1 —1/2 4 -1 1 —3/2 g8 -9
> Q(n) ~ 57/V2W—§+ﬂ\/2”” /7ﬁ” + 576 V27N /+m”/—
139 /5=, -5/2, 16 , —3 571 /o= —7/2 " 8992 —4, 163879 /o —9/2
To3680 V 2T T 3505 1976640 V2T 5629035 1V Zisos7re0 V 2TN

334144  —5 5246819 ~11/2 —6
199567075 ¥ T 150493593600 v 27N +0 (n )
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Theory 3

| Let W} be the egf for connected labelled (k-+1)-cyclic graphs

> for unrooted trees W_i(z) = T(2)—T*(2)/2, [z"]W_1(z) = n"?
> for unicycles Wy(z) = —(log(1—T(2))+T(2)+T?(2)/2)/2

6T%(2)—T°(2)
24(1—T(2))3

> for bicycles Wi(z) =

> for k> 1, Wi(z) = (f_’f;:g)z))gk, where A, are polynomials computable from
results in [jklp93]

| Knuth and Pittel’s tree polynomials ¢,(y) (y # 0) are defined
by (1-T'(2))7Y = 3_,2 ta(y)%;

> we can compute these for y > 0 from
tn(1) =1; 1n(2) = n"(14Q(n)); tu(y+2) = nitn(y)/y+tan(y+1)

| thanks to this recurrence, the asymptotics for ¢,, follow from
the known asymptotics of ()
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Theory 4

Let £ = v2m. All results agree with numerical estimates on this page|.

| the number of connected unicycles is C'(n,n) = n![z"|Wy(z) =
LQ()n" 1 +3/24+t,(—1) —t,(—2) /4

C(n,n) 1 —1/2 7. -1, 1 —3/2 131, —2 1 —5/2, 4 -3 139 —7/2
> —m~zEn —sn tén tagn iz én T 5535 7 567360 &1 +

8 . —4 571 ~1\9/2 4496 ~5 163879 —11/2 —6
n 9953280 S \7? ) 5620925 * T &n +0 (n )

8505 836075520

| the number of connected bicycles is C(n,n+1)=n![z"]Wi(z)=
20 (3) =570 (2) + 1580 (1) — 1580 (0) +35tn (—1) +35tn(—2)

C(n,n+1) 5 7 1/2 | 25 7 —1/2 79 —1 7 —3/2 413 . —2
> D :’)/2ﬂn_ﬂ§n ‘1’%_@5” _32404 — 5913 &M 0/ — 1860 1V +5
973 —5/2° 4 - 3097 = 2248 . —4 163879 -~ 83536 —5
314160 ST 1316/425 n +597619680 &n T 5412805 T ~16636160 & T311100175 T
5246819 - -
557680017600 &1 +0O (n )

| similarly, for the number of connected tricycles we get

C(n,n+2) 5 5/2 35 .2, 1559 3/2 55 33055 1/2 41971 31357 —1/2
> o g EN T N gt SN T Nt ostisa €M 136050 T 3651208 &7 T

1129  —1 ~3/2

sicais TO (” )
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Probability of connectness 1

.1 we now have all the results needed to calculate the asymp-
totic probability P(n,n+k) that a randomly chosen graph with

n nodes and n+k edges is connected (for n — oo and small
fixed k)

] the total number of graphs is g(n,n+k) = ((3)

n+k). This can be
asymptotically expanded:

g(n,n—1) 7. —1 , 259, —2 | 22393, —3 | 54359, —4 | 52279961, —5
5 o o/n\n_—3/9 L+gn " +5n "+ 56" "+ 10" T waae T
Zen—2(%)"n3/
777755299 - —6 7
Tosz10200" T O (n )
g(n,n+0) 1_5,.—1_ 53 -2 4067 ,,—3 9817 . —4  10813867,,—5
> s T 1 2’1 1927 11520 'Y 20430 15482880 ¢
Zen=2(5)"n1/
U 217565701, —6 11591924473, —7 8
206438400 ¥ 7as1782d00 v+ O (n )
g(n,n+1) 121, -1, 811, —2 43187, —3 ; 159571, —4 _ 55568731 , —5
> s s, Y 116" T 530407+ 73728 T 30965760 1Y
en—2(4)"n?/

%
2867716177, —6 _ 3215346127, —7 | 1317595356557, —8 _9
T 1238630400 " 5123366100" T ivseaaoragoo O (n )

> g(n,n+k) ~ \/58”—2(%)”n’f—l/2 (27" ' +o(n™)

7
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Probability of connectness 2

P(n,n—1) l__ 9 o2 1127 . —3 | 5189 457915  —5
L one2np 12 Y 38N Jr192 T 1520 " Toaa0 " +3096576n T
570281371 6 291736667 _7
Te570ae600 "t T aosamotg v O ( )

> check: n = 10, exact=0.1128460393, asymptotic=0.1128460359

P(n,n — _ _ _ _
[ G ~ 3= Tn 24 e 1= {80 =324 56n =240 (n7?)

> check: n = 10, exact=0.276, asymptotic=0.319

P(nontl) 5 1/24 515, —~1_28 ¢, —3/2_ 188347 2 308 —5/9
| et npi g " 12{:” +144 g &N TR = &N
O(n_3)

> check: n = 10, exact=0.437, asymptotic=0.407
> check: n = 20, exact=0.037108, asymptotic=0.037245
> check: n = 100, exact=2.617608 x 10~ 2, asymptotic=2.617596 x 10~ **
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The unlabelled case - unicycles e

L] A connected unicyclic graph is an undirected cycle of 3 or
more rooted trees. Start with a single undirected cycle (or
polygon) graph. It must have at least 3 nodes. Hanging from
each node in the cycle is a tree (a tree is of course a
connected acyclic graph). The node where the tree intersects
the cycle is the root, thus it is (combinatorially) a rooted
tree.

> A001429 is undirected cycles of 3 or more rooted trees
> A068051 is undirected cycles of 1 or more rooted trees

> A027852 is undirected cycles of exactly 2 rooted trees
> A000081 is undirected cycles of exactly 1 rooted tree
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The unlabelled case - unicycles for n =7

Uni cyclic graphs - 7 nodes Keith Briggs 2004 Sep 05 09:54
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The unlabelled case - asymptotics for unicycles

[ C(n,n) ~ 2.955765286™ n~(1/4—0.44689n"1/240.02197n ' +

)

1 term

2 terms

3 terms

10

100

LI | 500

1000
2000
5000

0.516328
0.823154
0.920261
0.943559
0.960070
0.974737

1.187715447
1.002325806
1.000220890
1.000092238
1.000042796
1.000017220

1.164181370
1.001254380
1.000029852
0.999999092
0.999997026
0.999999188
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