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Definitions for graphs

☞ (simple unlabelled undirected) graph:

☞ (simple unlabelled undirected) connected graph:

☞ (simple undirected) labelled graph:
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The problem

☞ compute the numbers of connected labelled graphs with n
nodes and n−1, n, n+1, n+2, . . . edges

. with this information, we can compute the probability of a randomly chosen
labelled graph being connected

☞ compute large-n asymptotics for these quantities, where the
number of edges is only slightly larger than the number of
nodes

☞ I began by reading the paper [fss04], but found some incon-
sistencies

☞ so I did some exact numerical calculations to try to establish
the dominant asymptotics

☞ I then looked at some earlier papers and found that the
required theory to compute exact asymptotics is known

☞ I computed the exact asymptotics and got perfect agreement
with my exact numerical data
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The inspirational paper [fss04]

☞ Philippe Flajolet, Bruno Salvy and Gilles Schaeffer: Airy
Phenomena and Analytic Combinatorics of Connected Graphs
www.combinatorics.org/Volume 11/Abstracts/v11i1r34.html

☞ The claim: the number C(n, n+k) of labelled (étiquetés)
connected graphs with n nodes and excess (edges-nodes) =
k > 2 (why not for k = 1?) is
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+
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☞
k 1 2 3 4 5 6 7

Ak(1) 5/24 5/16 1105/1152 565/128 82825/3072 19675/96 1282031525/688128

A′k(1) 19/24 65/48 1945/384 21295/768 603965/3072 10454075/6144 1705122725/98304

☞ Airy in Playford:
www.ast.cam.ac.uk/∼ipswich/History/Airys Country Retreat.htm
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Some problems with the paper

☞ I did some comparisons with exact counts for up to n = 1000
nodes and for excess k = 2, 3, . . . , 8

☞ The exact data was computed from the generating functions
using maxima (found to be faster than maple)

☞ The fit was very bad

☞ This formula was found to fit the data much better for
k = 2:
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√
2
n

+O
(

1
n

)]

☞ Also, on pages 4 and 24, I think S should have the expansion
1−(5/4)α+(15/4)α2+. . .
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Comparison of exact data with corrected formula
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Definitions for generating functions

☞ generating function (gf):

{a1, a2, a3, . . . } ↔
∞∑

k=1

akx
k

☞ exponential generating function (egf):

{a1, a2, a3, . . . } ↔
∞∑

k=1

ak

k!
xk
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Exponential generating functions

☞ exponential generating function for all labelled graphs:

g(w, z) =
∞∑

n=0

(1+w)(
n
2)zn/n!

☞ exponential generating function for all connected labelled
graphs:

c(w, z) = log(g(w, z))

= z+w
z2

2
+(3w2+w3)

z3

6
+(16w3+15w4+6w5+w6)

z4

4!
+. . .
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egfs for labelled graphs [jklp93]

☞ rooted labelled trees

T (z) = z exp(T (z)) =
∑
n>1

nn−1z
n

n!
= z+ 2

2!z
2+ 9

3!z
3+· · ·

☞ unrooted labelled trees

W−1(z) = T (z)−T (z)2/2 = z+ 1
2!z

2+ 3
3!z

3+16
4!z

4+. . .

☞ unicyclic labelled graphs

W0(z) =
1
2

log
[

1
1−T (z)

]
−1

2
T (z)−1

4
T (z)2 = 1

3!z
3+15

4!z
4+222

5! z5+3660
6! z6+. . .

☞ bicyclic labelled graphs

W1(z) =
T (z)4

(
6−T (z)

)
24

(
1−T (z)

)3 = 6
4!z

4+205
5! z5+5700

6! z6+. . .
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Introduction to asymptotic expansions

☞ Stirling:

Γ(n) ∼
(

2π

n

)1/2 (n

e

)n
[
1+

1
12

n−1+
1

288
n−2− 139

51840
n−3+. . .

]

☞ Taylor series:

1/Γ(n) = n+0.57721566 . . . n−0.65587807 . . . n2+. . .

☞ e.g. for n = 4, Γ(4) = 6: 3 terms of asymptotic expansion
give an absolute error < 10−6

☞ cf. the Taylor series - 3 terms give an absolute error > 5

☞ asymptotic expansion diverges for all n!
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Asymptotic expansion of C(n, n+k)/nn+3k−1
2

ξ ≡
√

2π green: from [bcm90] red: from [fss04] (with removal of factor e)

k type [n0] [n−1/2] [n−1] [n−3/2]

−1 tree 1 0 0 0

0 unicycle ξ1
4

1 bicycle 5
24

2 tricycle ξ 5
256 ξ 5

256 − 35
144

3 quadricycle 221
1512

221
24192 −

√
π35

96

4 pentacycle ξ 113
196608

blue: conjectured by KMB from numerical experiments

k type [n0] [n−1/2] [n−1] [n−3/2] [n−2] [n−5/2]

0 unicycle ξ1
4 −7

6 ξ 1
48

131
270 ξ 1

1152 − 4
2835?

1 bicycle 5
24 −ξ 7

24
25
36 −ξ 7

288 − 79
3240?

2 tricycle ξ 5
256 − 35

144 ξ1559
9216 − 55

144

3 quadricycle 221
24192 −ξ 35

10706
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Theory 1

The previous observations can be proved using theory available in [jklp93] and
[fgkp95]. I sketch the computations.

☞ Ramanujan's Q-function is defined for n = 1, 2, 3, . . . :
Q(n) ≡

∑∞
k=1

nk

nk = 1+n−1
n + (n−1)(n−2)

n2 +. . . ,

☞
∑∞

n=1 Q(n)nn−1zn

n! = − log(1−T (z)), where T is the egf for
rooted labelled trees: T (z) =

∑∞
n=1

nn−1

n! zn

☞ T (z) = z exp(T (z))
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Theory 2

☞ to get the large-n asymptotics of Q, we first consider the
related function R(n) ≡ 1+ n

n+1+
n2

(n+1)(n+2)+. . . , n = 1, 2, 3, . . .

. we have Q(n)+R(n) = n! en/nn

. let D(n) = R(n)−Q(n)

.
∑∞

n=1 D(n)nn−1zn

n! = log[(1−T (z))2

2(1−ez) ]

. D(n) ∼
∑∞

k=1 c(k)[zn](T (z)−1)k, where c(k)≡ [δk] log(δ2/2/(1−(1+δ)e−δ))

. maple gives D(n) ∼ 2
3+

8
135 n−1− 16

2835 n−2− 32
8505 n−3+ 17984

12629925 n−4+ 668288
492567075 n−5+

O
(
n−6

)
☞ now using Q(n) = (n! en/nn−D(n))/2, we get

. Q(n) ∼ 1
2n

1/2
√

2π− 1
3 + 1

24

√
2πn−1/2− 4

135 n−1 + 1
576

√
2πn−3/2 + 8

2835 n−2−
139

103680

√
2πn−5/2+ 16

8505 n−3− 571
4976640

√
2πn−7/2− 8992

12629925 n−4+ 163879
418037760

√
2πn−9/2−

334144
492567075 n−5+ 5246819

150493593600

√
2πn−11/2+O

(
n−6

)
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Theory 3

☞ Let Wk be the egf for connected labelled (k+1)-cyclic graphs
. for unrooted trees W−1(z) = T (z)−T 2(z)/2, [zn]W−1(z) = nn−2

. for unicycles W0(z) = −(log(1−T (z))+T (z)+T 2(2)/2)/2

. for bicycles W1(z) = 6T 4(z)−T 5(z)

24(1−T (z))3

. for k > 1, Wk(z) =
Ak(T (z))

(1−T (z))3k
, where Ak are polynomials computable from

results in [jklp93]

☞ Knuth and Pittel's tree polynomials tn(y) (y 6= 0) are defined
by (1−T (z))−y =

∑∞
n=0 tn(y)zn

n!
. we can compute these for y > 0 from

tn(1) = 1; tn(2) = nn(1+Q(n)); tn(y+2) = n tn(y)/y+tn(y+1)

☞ thanks to this recurrence, the asymptotics for tn follow from
the known asymptotics of Q
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Theory 4

Let ξ =
√

2π. All results agree with numerical estimates on this page.

☞ the number of connected unicycles is C(n, n) = n![zn]W0(z) =
1
2Q(n)nn−1+3/2+tn(−1)−tn(−2)/4

. C(n,n)
nn ∼ 1

4 ξn−1/2−7
6 n−1+ 1

48 ξn−3/2+131
270 n−2+ 1

1152 ξn−5/2+ 4
2835 n−3− 139

207360 ξn−7/2+
8

8505 n−4− 571
9953280 ξ

(
n−1

)9/2− 4496
12629925 n−5+ 163879

836075520 ξn−11/2+O
(
n−6

)
☞ the number of connected bicycles is C(n, n+1)=n![zn]W1(z)=

5
24tn(3)−19

24tn(2)+13
12tn(1)− 7

12tn(0)+ 1
24tn(−1)+ 1

24tn(−2)

. C(n,n+1)
nn ∼ 5

24 n− 7
24 ξn1/2 + 25

36−
7

288 ξn−1/2− 79
3240 n−1− 7

6912 ξn−3/2− 413
4860 n−2 +

973
1244160 ξn−5/2− 4

3645 n−3+ 3997
59719680 ξn−7/2+ 2248

5412825 n−4− 163879
716636160 ξn−9/2+ 83536

211100175 n−5−
5246819

257989017600 ξn−11/2+O
(
n−6

)
☞ similarly, for the number of connected tricycles we get

. C(n,n+2)
nn ∼ 5

256 ξn5/2− 35
144 n2+1559

9216 ξn3/2− 55
144 n+ 33055

221184 ξn1/2− 41971
136080+

31357
2654208 ξn−1/2+

1129
81648 n−1+O

(
n−3/2

)
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Probability of connectness 1

☞ we now have all the results needed to calculate the asymp-
totic probability P (n, n+k) that a randomly chosen graph with
n nodes and n+k edges is connected (for n → ∞ and small
fixed k)

☞ the total number of graphs is g(n, n+k) ≡
( (n

2)
n+k

)
. This can be

asymptotically expanded:
. g(n,n−1)√

2
πen−2(n

2 )
n

n−3/2
∼ 1+ 7

4n
−1 + 259

96 n−2 + 22393
5760 n−3 + 54359

10240n
−4 + 52279961

7741440 n−5 +

777755299
103219200n

−6+O
(
n−7

)
. g(n,n+0)√

2
πen−2(n

2 )
n

n−1/2
∼ 1

2−
5
8n
−1− 53

192n
−2− 4067

11520n
−3− 9817

20480n
−4− 10813867

15482880n
−5

− 217565701
206438400n

−6− 11591924473
7431782400 n−7+O

(
n−8

)
. g(n,n+1)√

2
πen−2(n

2 )
n

n3/2
∼ 1

4−
21
16n

−1+ 811
384n

−2− 43187
23040n

−3+ 159571
73728 n−4− 55568731

30965760 n−5

+ 2867716177
1238630400n

−6− 3215346127
2123366400n

−7+ 1317595356557
475634073600 n−8+O

(
n−9

)
. . . .

. g(n, n+k) ∼
√

2
πen−2

(
n
2

)n
nk−1/2

(
2−k−1+O(n−1)

)
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Probability of connectness 2

☞ P (n,n−1)
2ne2−nn−1/2ξ

∼ 1
2−

7
8 n−1+ 35

192 n−2+ 1127
11520 n−3+ 5189

61440 n−4+ 457915
3096576 n−5+

570281371
1857945600 n−6+291736667

495452160 n−7+O
(
n−8

)
. check: n = 10, exact=0.1128460393, asymptotic=0.1128460359

☞ P (n,n+0)
2ne2−nξ ∼ 1

4ξ−
7
6n
−1/2+1

3ξn
−1−1051

1080n
−3/2+5

9ξn
−2+O

(
n−3

)
. check: n = 10, exact=0.276, asymptotic=0.319

☞ P (n,n+1)
2ne2−nn1/2ξ

∼ 5
12−

7
12ξn

−1/2+515
144n

−1−28
9 ξn−3/2+788347

51840 n−2−308
27 ξn−5/2+

O
(
n−3

)
. check: n = 10, exact=0.437, asymptotic=0.407

. check: n = 20, exact=0.037108, asymptotic=0.037245

. check: n = 100, exact=2.617608×10−12, asymptotic=2.617596×10−12
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The unlabelled case - unicycles

☞ A connected unicyclic graph is an undirected cycle of 3 or
more rooted trees. Start with a single undirected cycle (or
polygon) graph. It must have at least 3 nodes. Hanging from
each node in the cycle is a tree (a tree is of course a
connected acyclic graph). The node where the tree intersects
the cycle is the root, thus it is (combinatorially) a rooted
tree.

. A001429 is undirected cycles of 3 or more rooted trees

. A068051 is undirected cycles of 1 or more rooted trees

. A027852 is undirected cycles of exactly 2 rooted trees

. A000081 is undirected cycles of exactly 1 rooted tree
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The unlabelled case - unicycles for n = 7
Unicyclic graphs - 7 nodes Keith Briggs 2004 Sep 05 09:54

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31 32 33
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The unlabelled case - asymptotics for unicycles

☞ C(n, n) ∼ 2.955765286n n−1(1/4−0.44689n−1/2+0.02197n−1+
. . . )

☞

n 1 term 2 terms 3 terms
10 0.516328 1.187715447 1.164181370

100 0.823154 1.002325806 1.001254380
500 0.920261 1.000220890 1.000029852

1000 0.943559 1.000092238 0.999999092
2000 0.960070 1.000042796 0.999997026
5000 0.974737 1.000017220 0.999999188
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