Valiant's theory of the learnable

Keith Briggs

Keith.Briggs@bt.com

www.btexact.com/people/briggsk2

2003 April 14 1330

TYPESET 11TH APRIL 2003 14:05 IN PDFIATEX ON A LINUX SYSTEM

Introduction

L G Valiant A theory of the learnable, Comm. ACM 27, 1134-42 (1984)

We want to learn an unknown Boolean function (predicate) F

- ullet to do this in general would take exponential time must test n-ary F for 2^n input combinations
- ullet so we restrict F, and then can achieve polynomial time

Learning protocol

t Boolean variables p_1, p_2, \ldots, p_t

vector: $\{0,1,*\}^t$ (*=undetermined). *Total* means no * in vector We have available EXAMPLE()

- ullet gives us a positive exemplification of F
- ullet that is, an assignment of variables making F true
- for example, $F(p) = p_1 p_2 + p_3$
 - \triangleright **EXAMPLE**() \rightarrow (*, *, 1)
 - \triangleright **EXAMPLE**() \rightarrow (1, 1, 0)

and ORACLE(x)

- ullet tells us if F is true for some given assignment x of variables
- for example:
 - \triangleright ORACLE $(1,0,0) \rightarrow 0$
 - \triangleright ORACLE $(0,0,1) \rightarrow 1$

Let D be a probability distribution on the set of vectors v such that F(v)=1

Learnability

A predicate is *learnable* if \exists an algorithm such that:

- ullet it runs in polynomial time in t and in a parameter h
- ullet with probability 1-1/h, the deduced predicate g never outputs 1 when it should not, but outputs 1 almost always when it should

L(h,s) is defined (for $\mathbb{R}\ni h>0, s\in\mathbb{Z}^+$) as the smallest integer such that in L independent Bernoulli trials each with probability 1/h of success, the probability of having fewer than s successes is less than 1/h

• For $s \geqslant 1$ and h > 1, $L(h, s) \leqslant 2h(s + \log h)$

	h	s	L(h,s)	bound
	10	2	38	86
	10	5	78	146
•	10	10	140	246
	100	2	662	1321
	100	5	1157	1921
	100	10	1874	2921

Finite CNF expressions

A conjunctive normal form (CNF) is a product of sums

- that is, an and of ors
- ullet Valiant requires each clause c_i in a CNF to be a sum of literals, where a literal is either a variable p_i or a negation of a variable
- For example, $p_2 + \overline{p_3} + p_6$ is a clause
- In a k-CNF, each clause contains at most k literals

Theorem A: for each k>0, any k-CNF is learnable via an algorithm that uses $L(h,(2t)^{k+1})$ calls of EXAMPLE and no call of ORACLE

Algorithm A

g = product of all possible k-clauses

For
$$n = 1, 2, ..., L$$

- $v = \mathsf{EXAMPLE}()$
- ullet for each c_i in g
 - ightharpoonup if $v \Rightarrow c_i$, then delete c_i from g

DNF expressions

A disjunctive normal form (DNF) is a sum of products

- that is, an or of ands
- Valiant requires the DNF to be *monotone*, that is, no variable is notted
- For example, $p_1p_3p_4+p_2+p_3p_6$ is in DNF

Theorem B: any monotone DNF of degree d is learnable via an algorithm that uses L(h,d) calls of EXAMPLE and dt calls of ORACLE, where t is the number of variables

Algorithm B

$$g = 0$$

For
$$n = 1, 2, ..., L$$

- $v = \mathsf{EXAMPLE}()$
- if $v \Rightarrow g$, then for $i = 1, 2, \dots, t$
 - ightharpoonup if p_i is determined in v (i.e. is not *), then
 - \Diamond set v equal to \overline{v} but with $p_i = *$
 - \Diamond if $\mathit{ORACLE}(\overline{v}) = 1$ then $v = \overline{v}$
 - $ightharpoonup m = product of all literals q such that <math>v \Rightarrow q$
 - \triangleright g += m