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Introduction

| consider connectivity of nodes with a radio range p placed
uniformly and randomly in a bounded region under various
models:

e Poisson 1d model. the nodes exist on all of R with a exponential distribution of
separation with parameter )\, and a window of unit length is placed over them.
The number of nodes visible through the window is Poisson distributed.

e fixed-n 1d model: there are exactly n nodes independently and uniformly placed
in [0, 1].
e Poisson 2d model: the nodes exist on all of R* with a intensity )\, and a

finite-area window is placed over them. The number of nodes visible through the
window is Poisson distributed.

e fixed-n 2d model. there are exactly n nodes independently and uniformly placed
in a bounded region R.

Notation:

> pdf=probability density function

> cdf=cumulative distribution function

> The notation is sloppy in not distinguishing a RV X and its values x
> [[x] is the indicator function: 1 if x is true, else 0
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Theory for the Poisson 1d model

o A is the intensity of nodes per unit length
« The pdf of the internode distance d is f(d) = Ae™*
« The cdf of the internode distance is F(d) = 1—e~

« The expectation of d is E[d] =1/
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More theory for the Poisson 1d model

We now place a unit length window over R and assume that n
nodes are visible. The following results are conditional on n

e There are n—1 internode intervals, and the cdf of the maximum interval is
Fooi(d) = (1—e )

o the cdf of the minimum interval is Fi(d) = 1—e "

o the pdf of the minimum interval is fi(d) = nie "

o The expectation of the minimum interval is E[d)] = 1/(2X), so is half the
expectation of the internode distance

e The intervals have correlation —1/n

e The probability of full connectivity for the n nodes is thus approximately (i.e.
ignoring correlation and edge effects) F,_i(p) = (1—e )"}

e This result is only approximate. We should expect deviations small n

The exact theory for the fixed-n case is here
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Order statistics theory [[dav70]

Let x1,xo,...,x, be RVs uniformly distributed in [0, 1].

Sort them in increasing order as x(;) < x(g) < ... < Z(y).

e The pdf of xz, is

<k_11>!<2> e

o The cdf of the range r = x(,)— () is nr" ' —(n—1)r"

o If w,.y = x—x(), then the pdf of w,, is
wﬁs_r_l (1—wps)" " /B(s—r,n—s+r+1)

e For the special case of adjacent nodes (s = r+1), this becomes n(l—wr,rﬂ)”_l,
which gives a cdf of 1—(1—w,,4+1)"

e However, the w,,;; are not independent random variables, so the probability
that the maximum of n—1 samples of w,,,; is less than a constant p, is NOT
[1—(1—p)"]""

> But this is approximately correct for large n and p near 1 and is
plotted in blue on the |graphs of simulation results
> As p — 1, this becomes 1—(n—1)(1—p)". [cf. the exact equation
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Exact theory for the fixed-n 1d model

o Let yp = z()—x (1) be the gaps (kK =2,...,n), with y; = ()
Y1 Y2 Y3

| | | | ]
0 L(1) L) LBy 7 LT(n) 1

e Their joint pdf is (for 1< m <n and > " y; <1)

f(ylay%""ym)_(n m)'< Z )

o If ¢; are constants such that > " c¢; < 1, then by integrating the pdf we obtain

m n—1
Pr[yl > C1,Y2 > cz,...] — (1_2 Ci)

1=1

n—m

e Boole’s law for the probability of at least one event A; of n events
Aq, Ao, ..., A, oOccurring is

i [LnJ Ai] = S PrA] =3 D PrAA -+ (—1)" P[4y A, L A,

1<J
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Exact theory for the fixed-n 1d model (cotd.)

e We don’t care about y;, so we put ¢; =0

e Thus

e This is plotted as a red line on the following pages
Note that for p > 1/2, this is exactly 1—(n—1)(1—p)".

Keith Briggs

>

Using Boole’s law, the probability that the largest y, exceeds some constant p is

n—1
Prym) > p :(n—l)Pr[y1>p]—< 5 )Pr[y1>c1,y2>C2]+,,,

L1/p]

=1
Pr[fully connected] =1—) (—l)z“(n , )(1—z’p)"
1

1=1

cf. an approximation
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Probability of connectivity for the fixed-n 1d model

2,5, 10, 20, 50 nodes
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Theory for the Poisson 2d model |[cre91]

o A is the intensity of nodes per unit area

o The pdf of the ngarest neighbour distance d is
f(d) = 2 Ade= ™4

e The cdf of d is F(d) = 1—e ™A
 The expectation of d is E[d] = 1/(2A\/?)

« The variance of d is (4—m)/(47A\)

o The probability of a node bein;g isolated (i.e. having no neigh-
bour within range p) is e ™*
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Theory for the Poisson 2d model

We now place a window R of area A over R?

e The number of nodes visible will be Poisson distributed with mean \ A

e Conditional on n nodes being visible, and if the nearest neighbour distances were
independent (which is not the case) the probability of no node being isolated

would be (1 —e—WQ) '

e There is no simple way to compute the probability of full connectivity. However,
since a necessary condition is that no node is isolated, the last expression is an
approximate upper bound for the fixed-n model and is plotted in red on the
tollowing graphs|

e The blue curve is the asymptotic probability of the whole region R being covered,
using [this theory
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Simulation results - square, p =0.1,0.3
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Simulation results - torus, p=0.1,0.3
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Simulation results - unit-radius disk, p =0.1,0.3
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Non-homogeneous Poisson process

Example: intensity falls off exponentially from an access point

20+ T . : _

-20+ o _
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Delaunay triangles 1][kla90]

o Pick one node O from a planar Poisson process of intensity A
o Consider triangles formed by two other nodes
o Call it empty if no other nodes are in the triangle

o Call it very empty if no other nodes are in the circumcircle
of the triangle

o« An empty triangle: .
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Delaunay triangles 2

The Delaunay triangulation consists of very empty triangles only.
The second figure shows the Voronoi tesselation superimposed.

LA 3L PN AT\
Ao < A ’
L) < & &
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Delaunay triangles 3

o« Let ¢ and b be the lengths of the two edges adjacent to O
and 6 the angle

o For very empty triangles, the joint pdf is

21 b%2—2abcos b

4 sin’ 0

2mabA\ exp | —m\? -

o« For very empty triangles, the pdf of the area A is
N Aexp (—AA)

. For very empty triangles, the mean of a is 22

. For empty triangles, the pdf is 2mabA*exp |[—A%absin(6)/2]

o In both cases, the mean number of triangles at O is 6
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Delaunay triangles 4

Integrating out over side b and angle 6, we get for the pdf of
side a:

T —Tra? 2 9
4a)\/ sinQHexp[ 7ra22] {1—|—eo‘"oz]y\wl/z(erf(on)—|—sign(u)) do
0

4 sin
where
B sin 6
@ = (7T)\)1/2
al cos
A —5
2sin“ 6
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Delaunay triangles 5

edge length distribution in Delaunay tesselation
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Distance distribution for some regions

Two points independently uniformly distributed in a region R;
the pdf of the distance d is f(d), mean distance is u:

e R = unit interval, f(d) =2(1-d)[[0<d<1]], u=1/3
e R= 1-torus, f(d) =2[[0<d<1/2], p=1/4
e R = 2-torus

2md if 0<d<1/2
fld) = 4 .
2d [r—4sec”'(2d)] if 1/2<d< V2

pwoo= [\/§—|—log(1—|—\/§)} /6

e R = unit radius disk, f(d) = d/n |4arctan (V4—d?/d) —dv4—d?| [0 < d < 2],
u = 128/(457)

e R = unit sphere, u = 36/35
e R = unit square, see next slide
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Asymptotics for near neighbours

o Put n points in a unit torus in R?

o Let di = be the distance to kth nearest neighbour

o Then it is known that ([eva02]): E[dy] = n~!/2 r(%i)/% no
(’)(n_3/2)

° SO E[dl] — 1/2 n_1/2—|—(9(n_3/2)
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Asymptotics for nearest neighbours - simulations

mean distance to neighbours on a torus

log(mean distance)

0 1 2 3 4 5 6 7
log(number of nodes)

nearest, second nearest, ...

asymptotic, * is exact value for n = 2,k = 1, namely [2Y/2+log(1+2'?)]/6
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Exact theory for mean distances on a torus 1

Recall that our pdf and cdf are defined piecewise: | will use
< and > to indicate the pieces on [0,1/2] and [1/2,1/v/2]
respectively:

f<(z) = 2w

f7(x) = 2z [m—4sec”(2x)]

F<(z) = nma’

F>(z) = V422—1+2° ‘T—4sec” ' (2z)]
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Exact theory for mean distances on a torus 2

| will use the subscript k:n to denote the kth order statistic in
a sample of size n

Thus

I'(n+1)

FT o kr | @ FS @ = FE @)

fin ()

and similarly for f; (z).
So we have

frn(@) = fi5(@)[0 < 2 < 1/2]+ £, (2)[1/2 <2 < 1/V7]
and
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Exact theory for mean distances on a torus 3

To get the mean, we can do the lower integral exactly:

1/2
us, = / RS (1) di
0

(m/4)" I'(n+1) k+1/2 k—n
(2k+1) F(k)F(n—k+1)F< k+3/2 W"‘)

but the upper integral

1//2
i = / t fron(t) dt
1/2

will have to be approximated. Luckily, it is typically a very

small correction term to u. , and goes to zero geometrically
with n.
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Exact theory for mean distances on a torus 4

Because k—n < 0, the hypergeometric function above is a
terminating series:

k+1/2 k—n (k+1/2)!(k—n)" (7 /4)’
F( k+3/2 ’”/4) Z k+3/2) !

1=0

It is quite feasible to evaluate pug., exactly from this, but if
desired we can use an integral representation of this function

and Watson’s lemma to find the large n asymptotics. | omit all
the details of this. The results are on the next page.
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Exact theory for mean distances on a torus 5

We now do asymptotics (n — oo) for the mean distance to the
kth neighbour

,ufn ~ n %n3/2—%n5/2—|—22—556n7/2—210—(15877,9/2—#...]
fy, o~ n? Z (n—l)_5/2—§—2(n—l)_7/2—|—151—1525(n—1)_9/2—. . ]
us, ~ n? 1—2 (n—2)_7/2—?—32(n—2)_9/2—|—. . ]

i~ [ )

pEn ~ T(k+1/2)/T(k)n

Note: for the 2d Poisson process, we have %n‘m exactly for the nearest neighbour
(k=1)
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Exact theory for mean distances on a torus 6

To compute the contribution to the mean from the upper
integral, we need to do:

1//2

Wi = / L fin(t) dt
1/2

| do not know a way of approximating this for all n and &,

but by making a series expansion of f:, around 1/4/2 and just
keeping the first term, for the nearest neighbour we get:

Thus a good approximation for the mean distance to the nearest
neighbour is

Hl:n = :u1<n—|—:u1>n ™~ 1/2 n_1/2_3/16n_3/2+(3_2\/§)n
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Almost sure connectivity results [mil70]

o Planar process of intensity A\ in region R

o Let p(r) = Pr|every point of R covered by a disk radius r]

e Then, as |R| — oc

p(r) ~ exp |~ A[R| ™™ (14712

o This is plotted in blue on

Keith Briggs

these graphs

of simulation results
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