Enumerating connected labelled graphs

Keith Briggs

Keith.Briggs@bt.com

more.btexact.com/people/briggsk2/

2004 August 17

conn-lab-graphs.tex TYPESET 2004 AUGUST 17 10:40 IN PDFIATEX ON A LINUX SYSTEM

The problem

- compute the numbers of connected labelled graphs with n nodes and $n-1, n, n+1, n+2, \ldots$ edges
 - with this information, we can compute the probability of a randomly chosen labelled graph being connected
- compute large-n asymptotics for these quantities, where the number of edges is only slightly larger than the number of nodes
- I began by reading the paper [fss04], but found some inconsistencies
- so I did some exact numerical calculations to try to establish the dominant asymptotics
- I then looked at some earlier papers and found that the required theory to compute exact asymptotics is known
- I computed the exact asymptotics and got perfect agreement with my exact numerical data

The paper [fss04]

- Philippe Flajolet, Bruno Salvy and Gilles Schaeffer: Airy Phenomena and Analytic Combinatorics of Connected Graphs www.combinatorics.org/Volume_11/Abstracts/v11i1r34.html
- The claim: the number C(n,n+k) of labelled (étiquetés) connected graphs with n nodes and excess (edges-nodes) = $k \ge 2$ (why not for k = 1?) is

$$A_{k}(1)\sqrt{\pi} \left(\frac{n}{e}\right)^{n} \left(\frac{n}{2}\right)^{\frac{3k-1}{2}} \left[\frac{1}{\Gamma(3k/2)} + \frac{A'_{k}(1)/A_{k}(1) - k}{\Gamma((3k-1)/2)} \sqrt{\frac{2}{n}} + \mathcal{O}\left(\frac{1}{n}\right) \right]$$

	k	1	2	3	4	5	6	7	8
	$A_k(1)$	5/24	5/16	1105/1152	565/128	82825/3072	19675/96	1282031525/688128	8
L	$A_k^{r}(1)$	19/24	65/48	1945/384	21295/768	603965/3072	10454075/6144	1705122725/98304	3

Airy in Playford:

www.ast.cam.ac.uk/ \sim ipswich/History/Airys_Country_Retreat.htm

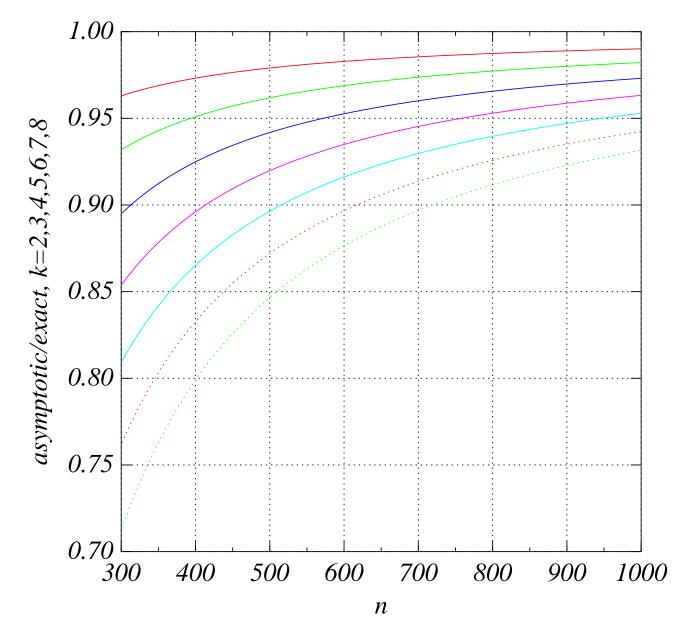
Some small problems?

- I did some comparisons with exact counts for up to n=1000 nodes and for excess $k=2,3,\ldots,8$
- The exact data was computed from the generating functions using maxima (found to be faster than maple)
- The fit was very bad
- This formula was found to fit the data much better for k=2:

$$A_{k}(1)\sqrt{\pi}n^{n}\left(\frac{n}{2}\right)^{\frac{3k-1}{2}}\left[\frac{1}{\Gamma(3k/2)}-\frac{A'_{k}(1)/A_{k}(1)-k}{\Gamma((3k-1)/2)}\sqrt{\frac{2}{n}}+\mathcal{O}\left(\frac{1}{n}\right)\right]$$

Also, on pages 4 and 24, I think S should have the expansion $1-(5/4)\alpha+(15/4)\alpha^2+\ldots$

Comparison of exact data with corrected formula



Asymptotic expansion of $C(n, n+k)/n^{n+\frac{3k-1}{2}}$

 $\xi \equiv \sqrt{2\pi}$ green: from [bcm90] red: from [fss04] (with removal of factor e)

k	type	$[n^0]$	$[n^{-1/2}]$	$[n^{-1}]$	$[n^{-3/2}]$
-1	tree	1	0	0	0
0	unicycle	$\xi rac{1}{4}$			
1	bicycle	$\frac{5}{24}$			
2	tricycle	$\xi \frac{5}{256} \ \xi \frac{5}{256}$	$-\frac{35}{144}$		
3	quadricycle	$\frac{221}{1512} \ \frac{221}{24192}$	$-\sqrt{\pi}\frac{35}{96}$		
4	pentacycle	$\xi \frac{113}{196608}$			

blue: conjectured by KMB from numerical experiments

$oxed{k}$	type	n^0	$[n^{-1/2}]$	$[n^{-1}]$	$[n^{-3/2}]$	$[n^{-2}]$	$n^{-5/2}$
0	unicycle	$\xi rac{1}{4}$	$-\frac{7}{6}$	$\xi \frac{1}{48}$	$\frac{131}{270}$	$\xi rac{1}{1152}$	$-\frac{4}{2835}$?
1	bicycle	$\frac{5}{24}$	$-\xi \frac{7}{24}$	$\frac{25}{36}$	$-\xi \frac{7}{288}$	$-\frac{79}{3240}$?	
2	tricycle	$\xi rac{5}{256}$	$-\frac{35}{144}$	$\xi \frac{1559}{9216}$	$-\frac{55}{144}$		
3	quadricycle	$\frac{221}{24192}$	$-\xi \frac{35}{10706}$				

The previous observations can be proved using theory available in [jklp93] and [fgkp95]. I sketch the computations.

- Ramanujan's Q-function is defined for $n=1,2,3,\ldots$: $Q(n) \equiv \sum_{k=1}^{\infty} \frac{n^{\underline{k}}}{n^k} = 1 + \frac{n-1}{n} + \frac{(n-1)(n-2)}{n^2} + \ldots,$
- $\sum_{n=1}^{\infty}Q(n)n^{n-1}\frac{z^n}{n!}=-\log(1-T(z))$, where T is the egf for rooted labelled trees: $T(z)=\sum_{n=1}^{\infty}\frac{n^{n-1}}{n!}z^n$
- $T(z) = z \exp(T(z))$

to get the large-n asymptotics of Q, we first consider the related function $R(n) \equiv 1 + \frac{n}{n+1} + \frac{n^2}{(n+1)(n+2)} + \dots$, $n = 1, 2, 3, \dots$

- \triangleright we have $Q(n)+R(n)=n!\,e^n/n^n$
- \triangleright let D(n) = R(n) Q(n)
- ▶ $D(n) \sim \sum_{k=1}^{\infty} c(k)[z^n](T(z)-1)^k$, where $c(k) \equiv [\delta^k] \log(\delta^2/2/(1-(1+\delta)e^{-\delta}))$
- ▶ maple gives $D(n) \sim \frac{2}{3} + \frac{8}{135} n^{-1} \frac{16}{2835} n^{-2} \frac{32}{8505} n^{-3} + \frac{17984}{12629925} n^{-4} + \frac{668288}{492567075} n^{-5} + O(n^{-6})$

riangleq now using $Q(n)=(n!\,e^n/n^n\!-\!D(n))/2$, we get

 $\begin{array}{l} \triangleright \ \ Q(n) \ \ \sim \ \ \frac{1}{2} n^{1/2} \sqrt{2\pi} - \frac{1}{3} + \frac{1}{24} \sqrt{2\pi} n^{-1/2} - \frac{4}{135} \, n^{-1} + \frac{1}{576} \sqrt{2\pi} n^{-3/2} + \frac{8}{2835} \, n^{-2} - \\ \ \frac{139}{103680} \sqrt{2\pi} n^{-5/2} + \frac{16}{8505} \, n^{-3} - \frac{571}{4976640} \sqrt{2\pi} n^{-7/2} - \frac{8992}{12629925} \, n^{-4} + \frac{163879}{418037760} \sqrt{2\pi} n^{-9/2} - \\ \ \frac{334144}{492567075} \, n^{-5} + \frac{5246819}{150493593600} \sqrt{2\pi} n^{-11/2} + O\left(n^{-6}\right) \end{array}$

ightharpoonup Let W_k be the egf for connected labelled k+1-cyclic graphs

- ▶ for unrooted trees $W_{-1}(z) = T(z) T^2(z)/2$, $[z^n]W_{-1}(z) = n^{n-2}$
- ▶ for unicycles $W_0(z) = -(\log(1-T(z))+T(z)+T^2(2)/2)/2$
- ightharpoonup for bicycles $W_1(z) = rac{6T^4(z) T^5(z)}{24(1 T(z))^3}$
- ightharpoonup for $k\geqslant 1$, $W_k(z)=rac{A_k(T(z))}{(1-T(z))^{3k}}$, where A_k are polynomials computable from results in [jklp93]
- Knuth and Pittel's tree polynomials $t_n(y)$ $(y \neq 0)$ are defined by $(1-T(z))^{-y} = \sum_{n=0}^{\infty} t_n(y) \frac{z^n}{n!}$
 - ▶ we can compute these for y > 0 from $t_n(1) = 1$; $t_n(2) = n^n(1+Q(n))$; $t_n(y+2) = n t_n(y)/y + t_n(y+1)$

We now have all the pieces needed. Let $\xi = \sqrt{2\pi}$. The asymptotic expansions below are computed by maple using results on the previous pages. All results agree with numerical estimates on this page.

the number of connected unicycles is $C(n,n)=n![z^n]W_0(z)=\frac{1}{2}Q(n)n^{n-1}+3/2+t_n(-1)-t_n(-2)/4$

the number of connected bicycles is $C(n,n+1) = n![z^n]W_1(z) = \frac{5}{24}t_n(3) - \frac{19}{24}t_n(2) + \frac{13}{12}t_n(1) - \frac{7}{12}t_n(0) + \frac{1}{24}t_n(-1) + \frac{1}{24}t_n(-2)$

similarly, for the number of connected tricycles we get

Probability of connectivity 1

we now have all the results needed to calculate the asymptotic probability P(n,n+k) that a randomly chosen graph with n nodes and n+k edges is connected (for $n\to\infty$ and small fixed k)

the total number of graphs is $g(n,n+k) \equiv \binom{\binom{n}{2}}{n+k}$. This can be asymptotically expanded:

$$\frac{g(n,n+0)}{\sqrt{\frac{2}{\pi}}e^{n-2}(\frac{n}{2})^n n^{-1/2}} \sim \frac{1}{2} - \frac{5}{8}n^{-1} - \frac{53}{192}n^{-2} - \frac{4067}{11520}n^{-3} - \frac{9817}{20480}n^{-4} - \frac{10813867}{15482880}n^{-5} - \frac{217565701}{206438400}n^{-6} - \frac{11591924473}{7431782400}n^{-7} + O\left(n^{-8}\right)$$

$$\begin{array}{l} \triangleright \ \frac{g(n,n+1)}{\sqrt{\frac{2}{\pi}}e^{n-2}\left(\frac{n}{2}\right)^{n}n^{3/2}} \sim \frac{1}{4} - \frac{21}{16}n^{-1} + \frac{811}{384}n^{-2} - \frac{43187}{23040}n^{-3} + \frac{159571}{73728}n^{-4} - \frac{55568731}{30965760}\,n^{-5} \\ + \frac{2867716177}{1238630400}n^{-6} - \frac{3215346127}{2123366400}n^{-7} + \frac{1317595356557}{475634073600}n^{-8} + O\left(n^{-9}\right) \end{array}$$

> ...

$$\triangleright g(n, n+k) \sim \sqrt{\frac{2}{\pi}} e^{n-2} \left(\frac{n}{2}\right)^n n^{k-1/2} \left(2^{-k-1} + O(n^{-1})\right)$$

Probability of connectivity 2

$$P(n, n-1) = 2^n e^{2-n} n^{-1/2} \xi \left(\frac{1}{2} - \frac{7}{8} n^{-1} + \frac{35}{192} n^{-2} + \frac{1127}{11520} n^{-3} + \frac{5189}{61440} n^{-4} + \frac{1127}{11520} n^{-3} \right)$$

 \triangleright check: n = 10, exact=0.1128460393, asymptotic=0.1128460359

$$P(n, n+0) = 2^n e^{2-n} \xi \left(\frac{1}{4} \xi - \frac{7}{6} n^{-1/2} + \frac{1}{3} \xi n^{-1} - \frac{1051}{1080} n^{-3/2} + \frac{5}{9} \xi n^{-2} + O\left(n^{-1/2} + \frac{1}{3} \xi n^{-1} - \frac{1051}{1080} n^{-1/2} + \frac{5}{9} \xi n^{-1/2} + O\left(n^{-1/2} + \frac{1}{3} \xi n^{-1/2} + \frac$$

 \triangleright check: n = 10, exact=0.276, asymptotic=0.319

$$P(n, n+1) = 2^n e^{2-n} n^{1/2} \xi \left(\frac{5}{12} - \frac{7}{12} \xi n^{-1/2} + \frac{515}{144} n^{-1} - \frac{28}{9} \xi n^{-3/2} + \frac{788347}{51840} n^{-1} \right)$$

- \triangleright check: n = 10, exact=0.437, asymptotic=0.407
- \triangleright check: n = 20, exact=0.037108, asymptotic=0.037245
- ▷ check: n = 100, exact= 2.617608×10^{-12} , asymptotic= 2.617596×10^{-12}

References

- [bcm90] E A Bender, E R Canfield & B D McKay: The asymptotic number of labeled connected graphs with a given number of vertices and edges, Random structures and algorithms 1, 127-169 (1990)
- [slo03] N J A Sloane, ed. (2003), The on-line encyclopedia of integer sequences www.research.att.com/ \sim njas/sequences/
- [jklp93] S Janson, D E Knuth, T Luczak & B G Pittel: The birth of the giant component *Random Structures and Algorithms*, 4, 233-358 (1993)
 - www-cs-faculty.stanford.edu/~knuth/papers/bgc.tex.gz
- [fgkp95] Ph Flajolet, P Grabner, P Kirschenhofer & H Prodinger: On Ramanujan's Q-function Journal of Computational and Applied Mathematics **58** 103-116 (1995) www.inria.fr/rrrt/rr-1760.html
- [fss04] Philippe Flajolet, Bruno Salvy and Gilles Schaeffer: Airy Phenomena and Analytic Combinatorics of Connected Graphs www.combinatorics.org/Volume_11/Abstracts/v11i1r34.html