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Classical theory

F Regular continued fractions are symbolic dynamics of the Gauss
map:

g(x) = 1/x−b1/xc for x ∈ (0, 1]

F The partial quotient (`digit') xk output at the kth iteration is
xk = b1/xc

F I write x = [x1, x2, x3, . . . ], where xk ∈ {1, 2, 3, . . . }

F The continued fraction is finite iff x is rational

F The continued fraction is eventually periodic iff x is a
quadratic irrational

F For almost all x, the digit i occurs with relative frequency
µ(i) ≡ log2

[
(i+1)2

i(i+2)

]
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More theory

F I want to extend this theory to look at occurrences of finite
blocks of digits i = (i1, i2, . . . , im), ij > 1

F [4, p226] gives a formula for relative frequency of the m-block
i which holds as n →∞ for almost all irrationals:

card{κ : (xκ, . . . , xκ+m−1) = i , 1 6 κ 6 n}/n =

log2

[
1+v(i)
1+u(i)

]
+o

(
n−1/2 log(3+ε)/2(n)

)
where (with [i] = pm/qm for the m-block i)

u(i) =
{

(pm+pm−1)/(qm+qm−1) if m is odd
pm/qm if m is even

v(i) =
{

pm/qm if m is odd
(pm+pm−1)/(qm+qm−1) if m is even
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Numerical values for the frequencies

For 2-blocks:

1 2 3 4 5 6
1 0.15200 0.07038 0.04064 0.02647 0.01861 0.01380
2 0.07038 0.02914 0.01594 0.01005 0.00691 0.00505
3 0.04064 0.01594 0.00851 0.00529 0.00361 0.00262
4 0.02647 0.01005 0.00529 0.00326 0.00221 0.00160
5 0.01861 0.00691 0.00361 0.00221 0.00150 0.00108
6 0.01380 0.00505 0.00262 0.00160 0.00108 0.00078
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Literature survey

F Lang and Trotter [1] examined the frequency of digits amongst
the first 1000 of several cubic irrationals

F Brent et al. [2] examined the frequency of digits amongst the
first 200000 of several algebraic irrationals

F Neither of the above papers find any evidence of abnormality
amongst the numbers examined

F No papers look at the distribution of blocks of length greater
than 1
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Explicit examples of abnormal numbers

F all quadratic irrationals, e.g. 21/2 = 1+[2, 2, 2, 2, . . . ]

F I1(2)/ I0(2) = [1, 2, 3, 4, . . . ] (ratio of modified Bessel functions)

F I1+a/d(2/d)/ Ia/d(2/d) = [a+d, a+2d, a+3d, . . . ]

F tanh(1) = [1, 3, 5, 7, . . . ]

F exp(1/n) = [1, n−1, 1, 1, 3n−1, 1, 1, 5n−1, . . . ]; n = 1, 2, 3 . . .

F exp(2) = 7+[2, 1, 1, 3, 18, 5, 1, 1, 6, 30, 8, 1, 1, 9, 42, 11, 1, 1, . . . ]

F exp(2/(2n+1)); n = 1, 2, 3 . . .

F
∑∞

k=1 2−bkφc = [20, 21, 21, 23, 25, 28, 213, . . . ]; φ = (
√

5−1)/2
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Method

F I calculate a few million digits for several cubic irrationals
and a few other irrationals

F I count exactly the observed frequency of all blocks of lengths
1,2,3,4, and 5

F I calculate a Pearson χ2 test statistic which measures the
deviation of the observed frequencies from the expected fre-
quencies

F Because the number of degrees of freedom ν is so large (typ-
ically several thousand), a normal approximation is sufficiently
accurate. The transformation is Z ≡

√
2χ2−

√
2ν−1. Under

the assumption of normality (of the cf of x!), Z is distributed
N(0, 1)
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Pearson χ2 results: 21/3 and 31/3
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Pearson χ2 results: 41/3 and 51/3
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Pearson χ2 results: 2 cos(2π/7) and largest root of
x3−8x−10

2cos2pion7
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(the last example is famous for having several abnormally large digits)
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Pearson χ2 results: (
√

5−1)/2+
√

2−1 and π
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Autocorrelation of digits

F We would expect the the autocorrelation function (acf) of any
analytic function of the digits that has a finite mean (for
example, the log or the reciprocal) would decay like qk at lag
k, where q ≈ −0.303663 is Wirsing's constant

F This is investigated in the following graphs. I plot log10 of the
absolute value of the acf as a function of lag. The green line
has the Wirsing slope

F In Rockett & Szüsz [3], we have the result

Pr [xn = r & xn+k = s] = Pr [xn = r] Pr [xn+k = s]
(
1+O(qk)

)
This, however, is too weak to allow explicit statistical tests
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acf estimation difficulties

F For the AR(1) process x(t+1) = αx(t)+ε, |α| < 1, the exact acf
at lag k is ρ(k) = αk

F But the usual acf estimator r for a sample of size n has
variance

var [rn(k)] =
1
n

[
(1+α2)(1+α2k)

1−α2 −2kα2k
]

F More generally, for a process whose acf decays for large k
in the same power-law fashion, we have approximate variance
var [rn(k)] = 1

n

[
1+α2

1−α2

]
for large k.

F I expect my process to conform to this behaviour, and if it
does, putting in the numbers gives an estimate of k = 6 for
the largest k for which the acf estimates are meaningful

Keith Briggs Statistics of continued fractions 14 of 18



autocorrelation of logs of digits: 21/3 and 31/3
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autocorrelation of logs of digits: 41/3 and 51/3
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autocorrelation of logs of digits: 2 cos(2π/7) and largest
root of x3−8x−10

2cos2pion7
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