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Outline

* Motivation for asynchronous distributed algorithms (ADAs)
* Simulation techniques
* Some real examples

+ Future work
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Models of computing

* Single CPU + RAM 1

* Multiple CPU + RAM 1

* Cluster (Beowulf, mosix) 1

* LetaGrid 1

* Asynchronous distributed algorithms (ADAs) 1

 internet 1

*x ..

‘ Can we unify these? |

Keith Briggs Asynchronous distributed algorithms 3 of 24]



Asynchronous distributed model

» Network of identical nodes, with message queue
» Each knows only its neighbours

» Each performs the same subalgorithm

* Each runs asynchronously wrt neighbours

* Protocol: a finite set of pre-specified messages

* Indefinite delay before reply to message

Theme: atheism
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* % % % % %

Cooperation of nodes

Required: to perform some useful global actions:

Reboot system

Detect node failures

Count total number of nodes
Name nodes and elect leader
Build spanning trees

Find shortest paths

Compute and optimize network flows
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Simulating an ADA on one processor

In decreasing order of weight:

* unix processes |
* kernel threads 1
* threads in python, java etc. 1

+ other tricks
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Python threads

i nport threading
cl ass Node:
def init(links):
nmessage_queue=|[ ]

def run():
whi |l e 1:
# ...

def send(target):
# ...
def receive(source):
# ...
nodes=[ Node([ 2, 3]), Node([3]), Node([1])]

for node in nodes:
Thread(node. run).start ()

Keith Briggs
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Counting all nodes

* All nodes asleep except 0, who is awake and sends to all
neighbours

e if receiver awake: return ‘reject’
e if receiver asleep:

> wake up and relay message to neighbours
> return number of nodes from relay replies
> receiver returns sum-+1 to requester
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Shortest path routing to node 0O

Asynchronous Bellman-Ford algorithm:

(1) — min z(j)+d(j)

7 € neighbours of node ¢

where:

e x(7) is node ¢’s current estimate of the shortest path to node 0

e d(j) is the distance to node j (one hop)

Termination?
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Building a spanning tree
Root node has weight 1
while 1:

e node sends its weight to neighbours
e if receiver is unweighted, adopt sender’s weight+1
e else if receiver’s weight > sender’s weight+1

> receiver adopts new parent

/i\\
)

2
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Layering

optimization, flows, . ..
counting; spanning tree
routing
reboot: failure detection
adjacency
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Graph centre - definitions

* D = d(x,y) = distance matrix of graph G

* The eccentricity of a vertex x in G and the radius p(G) are
defined as e(r) = maxycy d(x,y) and p(G) = mingey e(z)

+ The centre of (G is the set
C(G)={zeV]e(lr)=pG)}

C'(G) is the solution of the emergency facility local problem

* The status d(x) of a vertex and the status o(G) of the graph
G are defined as d(z) =), c d(z,y) and o(G) = mind(x)

* The median is the solution of the service facility location
problem. The median of G is the set

M(G) =1z eV |dx)=0(G)}
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Graph centre - algorithm
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Electrical circuits: theory

» Digraph G with r; the resistance of edge k

* Problem 1: translate graph topology (known only locally) to
circuit equations

* Problem 2: solve these equations

* Apply to the circuit:

e Kirchhoff’s current law (KCL)
e Kirchhoff’s voltage law (KVL)
e Ohm’s Law (€2L)

» Let v be the voltage vector and i the current vector (in edge
space)
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Electrical circuits: more theory

* A is the adjacency matrix and D is the degree matrix

% Find incidence matrix B from BB'=L=D—-A
* Then KCL is B1 =0

* Build a spanning tree T

* Edges in 1" are branches, other edges are chords
» Each chord has a fundamental cycle (FC)

* C': matrix with one column for each edge, with elements
being the coefficients of the corresponding FC in the edge
space (only chords are really needed)

% Then KVL is CTo =0

* QL is Vi = 1pTE

Keith Briggs Asynchronous distributed algorithms 15 of 24]



Electrical circuits: the solution!

* 12 = Yv, where Y is the conductance matrix
* Y = —CC+R, R = diag(rl,rg,...)

* CT1 is the weighted Moore-Penrose pseudo-inverse of C with
weight R. If R = WTW, then C+*E = (WC)* WT '

% C*ECC = C and (RCCHRYT = ROC+HR

* | have developed an algorithm for incremental computation of

C+ which can be applied as the columns of C are found by
remote nodes
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Electrical circuits: example

0 1 0 O]

1 0 1 1

A_0101

&2 01 1 0
e3 1 0 0 0]
1 Ohm -1 1 0 -1
B_00—11
0 -1 1 0

4 nodes 4 links
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Electrical circuits: example continued

O 0 0 O
0O 0 1 O
C =
e4 O 0 1 O
10hm 0 0 1 0
e3
1 Ohm

o oo

-1/3  —-1/3 —1/3
-1/3  —-1/3 —1/3

0 0 0
-1/3 —-1/3 —1/3

4 nodes 4 links
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Distributed linear algebra

» Example problem: compute matrix A~', when elements A;;

are received in random order and at random times from
distant nodes

* Assume messages are updates A;; — A;;+« to an initially zero
matrix

* Require A~! to be correct at all times

* Generically A is singular at most times, but we can use the
Moore-Penrose pseudo-inverse AT

> AATA = A

> ATAAT = AT

> (AANHT = AAT
> (ATA)T = ATA

» Update formulas are available which require storage only of
the current A and A!

* cf. stream computing model
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Exact real arithmetic example
: o :
(22 =2

more.btexact.com/people/briggsk2/XR.html
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Dynamical processes on graphs

* coupled dynamical systems 1

d

* diffusion processes = u=Lu |

+ discrete Green’s functions 1|

T 0 0———0

3 2 1
> G(F): 2 4 2 /2
1 2 3
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Delaunay triangles

Can we compute this in a distributed fashion?
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Ideas for future work

* dynamic topology

* characterize convergence rates

* hontermination

* computational complexity issues

* distributed optimization

* distributed control of network flows

*x ...
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