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Birmingham, all departures
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Leicester, all departures
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Coventry to Birmingham
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Coventry to Euston
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The g—exponential law

o Exponential law: f3(t) o< exp(—0t)

e eq,5(1):=(1/Z)(1+B(g—1)x)"/ -9,
08>0, 1<q<2

'Z_ (2 q)

* mean =5 L

B(3—2q)
+ Tim, 1 g 5(t)=exp(—0)/Z
o large ¢ gives a power-law (long tail)



The problem

The problem loosely stated

« Given: a transport network with timetabled
services on each edge (leg)

« Given: a model of the distribution of delays

« Given: a probabilistic optimality criterion (such
as the chance of a final delay more than 10
minutes is less than 5%)

« To find: some routes satisfying the criterion

o To find: the latest departure time satisfying the
criterion



The problem

The problem formalized

 Given: a weighted digraph g, a timetable
7(ng, n1) for each arc (ng,n1)€g, an arrival
time «, and parameters 7>0, ¢>0.

« To find: a route p and maximal departure time ¢
such that Prob[arrival after a+7]|<e



Short paths

Stochastically short paths

« Given a graph with RVs as edge weights and
two nodes, we could:
e minimize expected time to travel between the nodes
e find a route which maximizes the probability that it is shortest
find the route of shortest mean time, subject to some
condition on the variance



Empirical distribution of delay g—exponentials The problem Short paths Propagation of probability Problem formulation Algor

Short paths in a weighted digraph

time=275 time=278
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Bath to Manchester, shortest mean time

time=233
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Markov model of train transitions
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Propagation of probability

Markov model of train transitions

o ldea: the states of the system are the particular
trains the passenger is on

 Train-changing rule: the passenger always takes
the first train going along his pretermined route
(no dynamic recomputation of routes)

o 2-tuple indices: (7,7) (=0, —00<j<00) means
that on leg 7, the passenger took train j



Propagation of probability

General setting for one train transition

« Given: a sequence of independent real-valued
RVs X, (—oo<i<oo) such that
supp(X;)=(t;, 00) with t; a strictly increasing
(time) sequence.

o For a given time ¢ find (for each i) the
probability p;(t) that X; is the smallest value
such that X;>t.

o That is, if j#1, either X;<¢, or X;>X;.



Propagation of probability

Example for n=3

o Let fi(x1)fo(xo) f3(x3) be the joint density.
o Then pi(t)=[ [ [ fi(x1) fa(w2) f3(23)dzidaadas

on a suitable domain.
o e.g. p1(t)=Pr[Xo<t, Xs<t, t<X1]+Pr[Xo<
t,t< X1, X1 < X3]+Prlt< X1, X1 < Xo, X1 < X5
o PriXo<t, X<t t<Xq]|=
Jower Josct Jica, F1(@1) fo(@2) f3(23) d21d2adas
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Special case - shifted exponentials

° fz(l'z, t):H(t>tZ, )\z exp(—)\l(x—tz)), 0), 1=1,2,3,...

° Pr[X1 <t<X0<X2]:—H(t<d2, 0, ds <t,— exp(—)\g(t—
dg))+1)(—H(t<d1, 0,t<ds, exp(—)\l(t—dl)) —1,d3<
t, ()\1 exp(—)\lt+)\1d1+)\3d3—)\3t)+exp()\1(d1—dg))/\g—
A1 —)\3)/(/\1 —f—)\g)) exp()\ldg))\l —H(t<d1, 0,t<
d3,€XP(-A1(t-d1))-1,d3<
t, (A1 exp(—=Ait+Aidi +A3d3 — Ast) +exp(Ai (di —ds) ) A —
A —A3)/(A1+A3)) exp(Aids) Az +exp(Ardy ) Az —
)\1 exp()\ldg) —)\3 exp()\ldg))/()\l +)\3) exp(—)\ldg)

e Here H(C,T,F) is T if C is true, else F
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IPS—PBO—DON—MAN dep. 12:00

IPS 12:02 -> PBO 13:37 0.8380
PBO 13:46 -> DON 14:43 0.7731
DON 14:57 -> MAN 16:36 p=0.7377
DON 15:55 -> MAN 17:37 p=0.0353
PBO 13:58 -> DON 14:53 0.0466
DON 14:57 -> MAN 16:36 p=0.0405
DON 15:55 -> MAN 17:37 p=0.0061
PBO 14:25 -> DON 15:35 0.0173
DON 15:55 -> MAN 17:37 p=0.0169
DON 16:42 -> MAN 18:02 p=0.0004
PBO 14:46 -> DON 15:43 0.0009
DON 15:55 -> MAN 17:37 p=0.0009
IPS 12:32 -> PBO 14:07 0.1551
PBO 14:25 -> DON 15:35 0.1505
DON 15:55 -> MAN 17:37 p=0.1468
DON 16:42 -> MAN 18:02 p=0.0036
PBO 14:46 -> DON 15:43 0.0041
DON 15:55 -> MAN 17:37 p=0.0039
DON 16:42 -> MAN 18:02 p=0.0002



Algor

Algorithm

o Phase 0: find set P of the 3 or 4 paths of
shortest mean time

o Phase 1: for each path p€ P, and for a given
start time, propagate all probabilities through
the graph using the Markov model

« Compute probability p=Problarrival after a+7|

o If p>e¢, repeat with an earlier start time.



IPS—MAN arr. 19:00

Iter 1: Probability of arriving by 19:00 is 99.9%

Ipswich 12:02 ->
Peterborough 14:56 ->
Doncaster 16:42 ->

Iter 2: Probability of arriving by 19:00 is 98.3%

Ipswich 12:02 ->
Peterborough 14:56 ->
Doncaster 16:53 ->
Sheffield 17:40 ->

Iter 3: Probability of arriving by 19:00 is 95.7%

Ipswich 12:02 ->
Peterborough 14:56 ->
Doncaster 17:01 ->
Leeds 17:55 ->
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